Direct Sampling Methods for General Nonlinear Inverse Problems

Jun Zou The Chinese University of Hong Kong

Joint work with

Yat Tin Chow (UCR) & Kazufumi Ito (NCSU) http://www.math.cuhk.edu.hk/~zou

OUTLINE

Motivation of sampling-type methods

General framework of direct sampling methods

DSMs for Inverse acoustic/EM scattering, EIT, DOT

DSMs for moving inhomogeneous media

Optimal control approach for Sobolev scale

Most Popular Approach for Inverse Problems

Most IPs: parameter identifications in PDEs, e.g., EIT, DOT, Inverse Scattering, Seismic Tomography, ... Stationary PDE: $L_q(u) = 0$ or time-dependent PDE: $D_t^{\alpha}u - L_q(u) = 0$ Inverse problem is to solve $u(q) = u^{\delta}$ on Γ

Mostly the solution parameter q tells us information geometric shape/location & distributional values

Least-squares formulation with regularization

IPs are mostly ill-posed: $u(q) = u^{\delta}$ on Γ

transform to a nearby "well-posed" problem:

 $\min_{q \in K} J(q) = \text{data fitting } (u(q) - u^{\delta}) + \beta \Phi(q)$

A most crucial mathematical issue :

choose K, Φ, β s.t. it is stable wrt data

Solution of Nonlinear Optim Systems

Output LS Tikhonov regularization :

 $\min_{q \in K} J(q) = \text{data fitting } (u(q) - u^{\delta}) + \beta \Phi(q)$

1st approach: coupled optimality PDE system

```
Forward PDE ;
Adjoint PDE ;
Variational Inequality
```

Singularities: parameters mostly disconts, unknown e.g., conductivity in EIT, refractive index in inverse medium

Iterative Solvers for Nonlinear Optim Systems

Least-squares minimization :

 $\min_{q \in K} J(q) = \text{data fitting } (u(q) - u^{\delta}) + \beta \Phi(q)$

highly nonlinear, nonconvex, nonsmooth

2nd approach: iterative

Most popular iterative, e.g., Newton type:

need to choose β , h, Δt ,

need good initial guess of q, repeated forward solutions, need the derivatives of u(q) wrt changes of q often very sensitive to noise

Often very expensive & challenge to solve

Is it always worthwhile or necessary to do so?

Alternative Solvers

Indeed not worthwhile or necessary to do

$$\min_{q \in K} J(q) = \text{data fitting } (u(q) - u^{\delta}) + \beta \Phi(q)$$
(1)

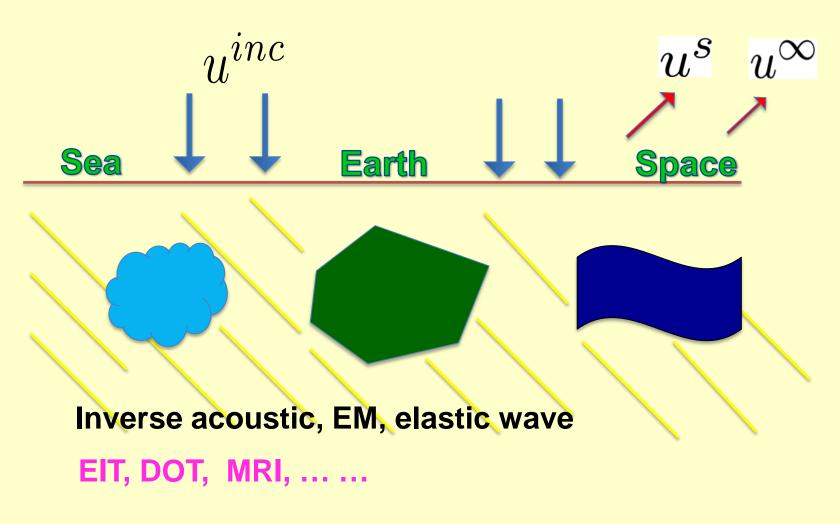
1st: if noise not small, we can see from $q - q^{\delta,h} = (q - q^{\delta}) + (q^{\delta} - q^{\delta,h}) = O(\delta^{\gamma}) + O(h^{\alpha})$

2nd: no good accuracy needed for the concerned applications

Alternative solvers, overcoming technical barriers:

no need good initial guess of q, no repeated forward solutions, no need the derivatives of u(q) wrt changes of q

Can we reconstruct Shape & Location, without Physics?



Linear Sampling Method

Colton-Kirsch 96 : a truly revolutionary algorithm! Inverse acoustic scattering: $\Delta u + k^2 n^2(x) u = 0$

Consider the far-field operator $F: L^2(S^{N-1}) \mapsto L^2(S^{N-1})$ $(Fg)(\hat{x}) = \int u_{\infty}(\hat{x}, d) g(d) ds(d), \quad \hat{x} \in S^{N-1}$

and the far-field equation for g:

$$Fg = \Phi_{\infty}(\cdot, z) \quad \forall z \in \mathbb{R}^N$$

Solve for g at each z, and look at its energy $\|g(\cdot, z)\|_{L^2(S)}$

Algorithm of LSM

Turns inverse scattering into solving integral equations

Algorithm of LSM : select a numerical cut-off value *C*

- 1. Select a grid T_h of sampling points, covering D
- 2. At each z, solve the far-field equation for $g(\cdot, z)$
- 3. Determine

$$z \in D$$
 if $\|g(\cdot,z)\| \leq c$; $z
ot \in D$ if $\|g(\cdot,z)\| > c$

Drawbacks of LSM

• No effective strategies to choose numerical cut-off values.

Huge computational efforts: need to solve the far-field equation for each sampling point, e.g.,

for an $n \times n \times n$ grid, need to solve n^3 ill-posed equations

The grid should be very fine to get a fine reconstruction

New Variants of LSM

Li-Liu-Zou, SISC 09:

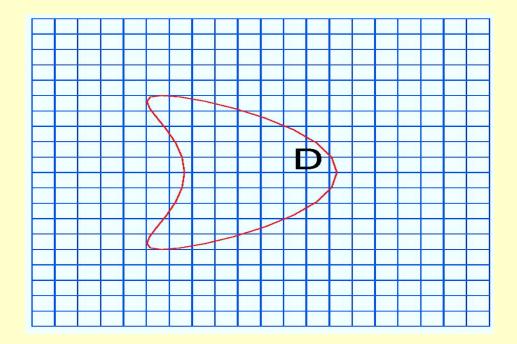
Multilevel Linear Sampling Method, reduce computational complexity from $O(n^3)$ to $O(n^2)$

Li-Liu-Zou, SISC 10:

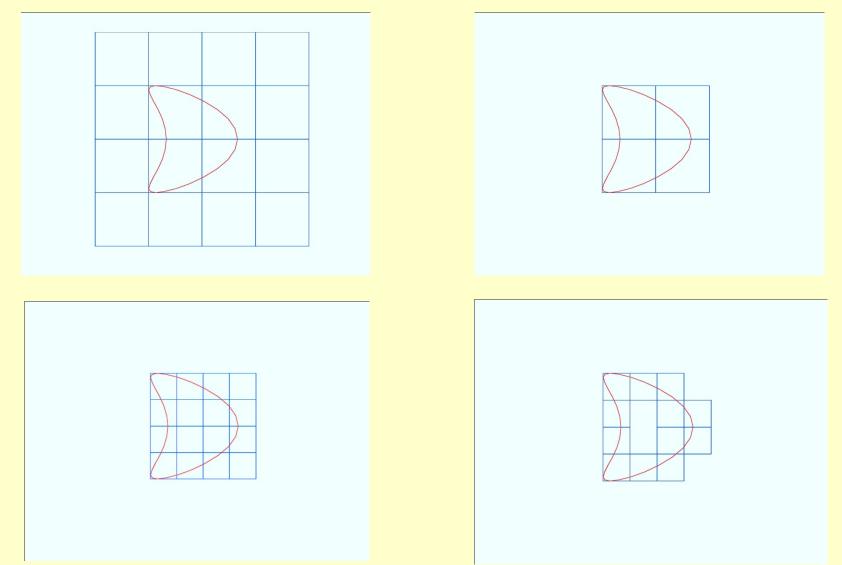
Strengthened LSM with a Reference Obstacle, provide a deterministic technique to select feasible numerical cut-off values

Multilevel Linear Sampling Method

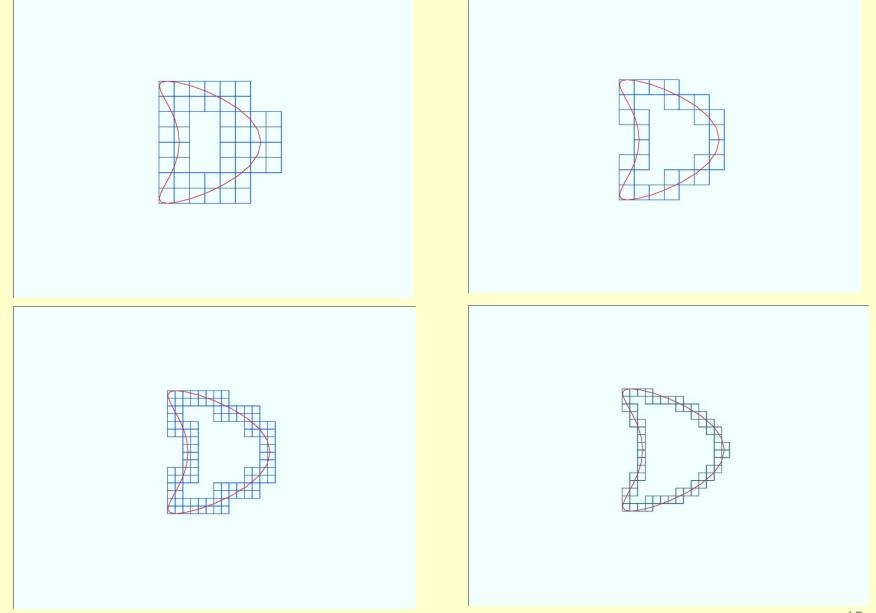
MLSM : get rid of remote and inner cells



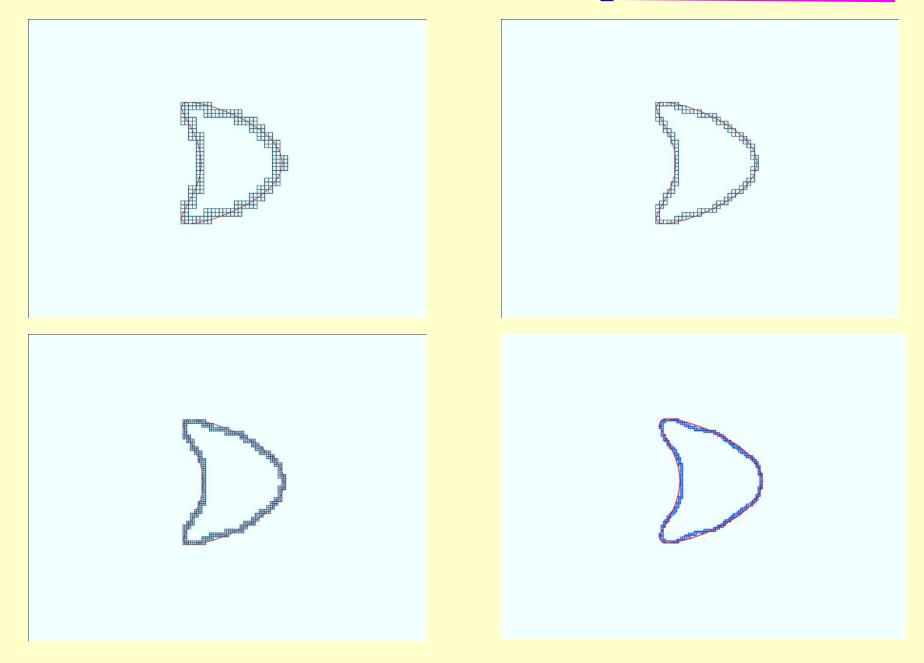
Numerical Example I



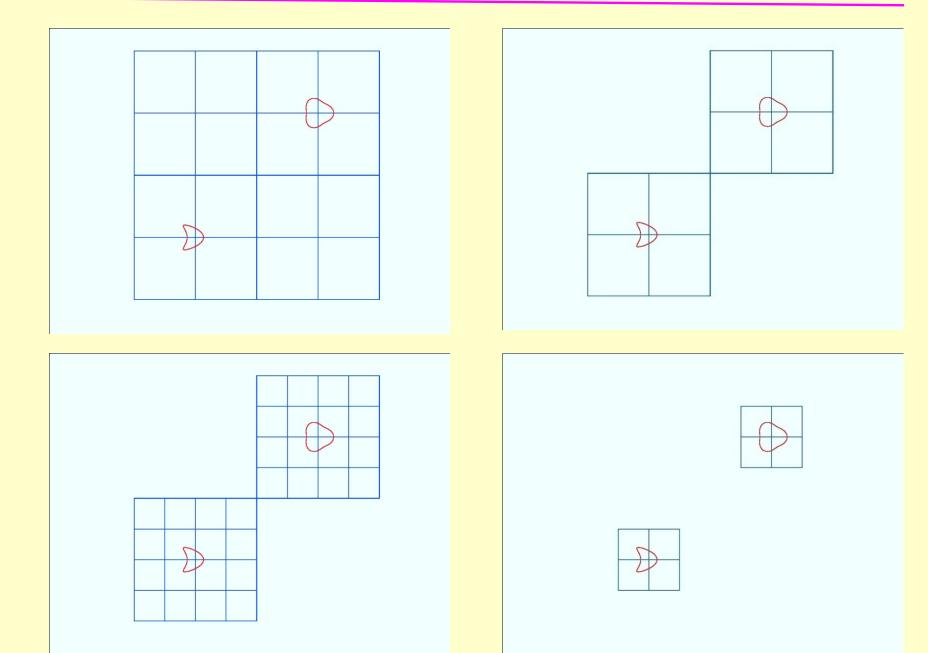
Numerical Example I



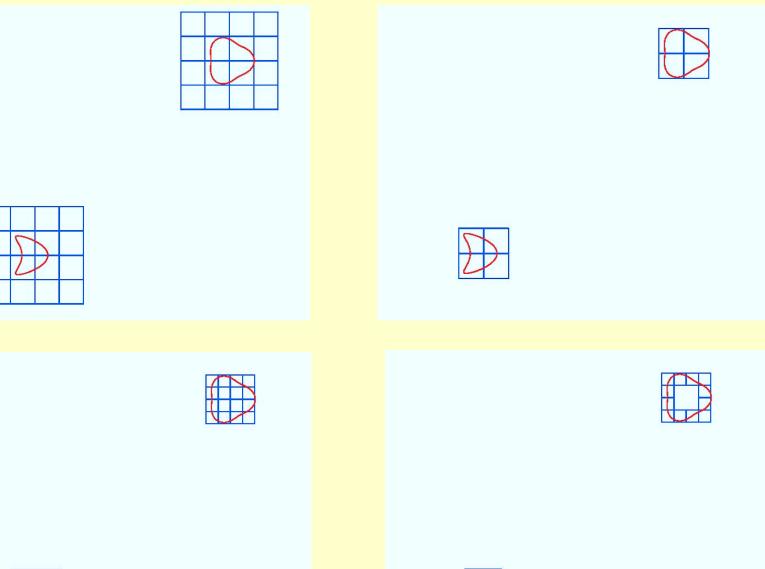
Numerical Example I



Numerical Example II



Numerical Example II



Sampling-type Methods

Linear sampling method (Colton-Kirsch 96);
 Factorization method (Kirsch 98);
 Point source & multipole method (Potthast 98);
 Probe method (Potthast 01);
 Reciprocity Gap Sampling Method (Colton-Haddar, 05)
 Subspace-based optimization method (Chen 08)

$\left\langle \right\rangle$

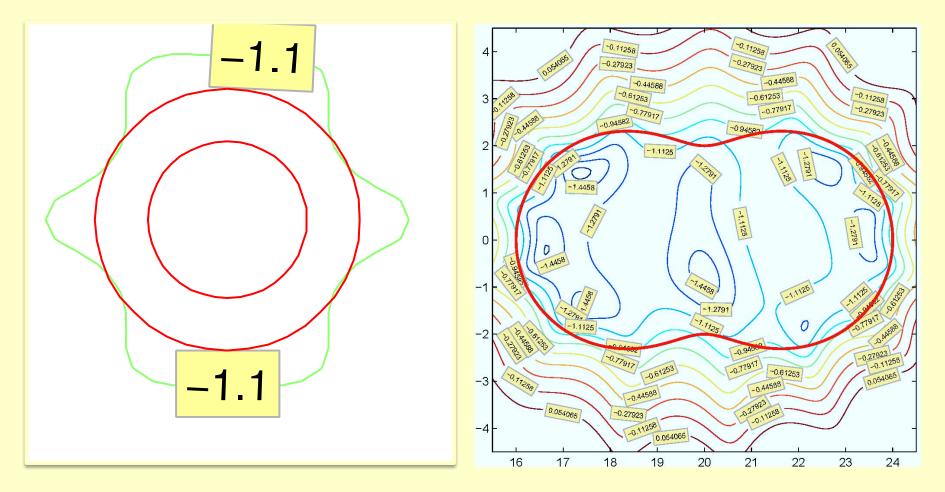
Monographs:

Potthast, Chapman & Hall, 01; Kirsch, Grinberg, Oxford 07; Cakoni, Colton, Monk: SIAM 11; Cakoni, Colton, Springer 14; Nakamura, Potthast, IOP, 15; X Chen, Wiley, 2018;

But

when we apply these methods, we may still encounter several common difficulties

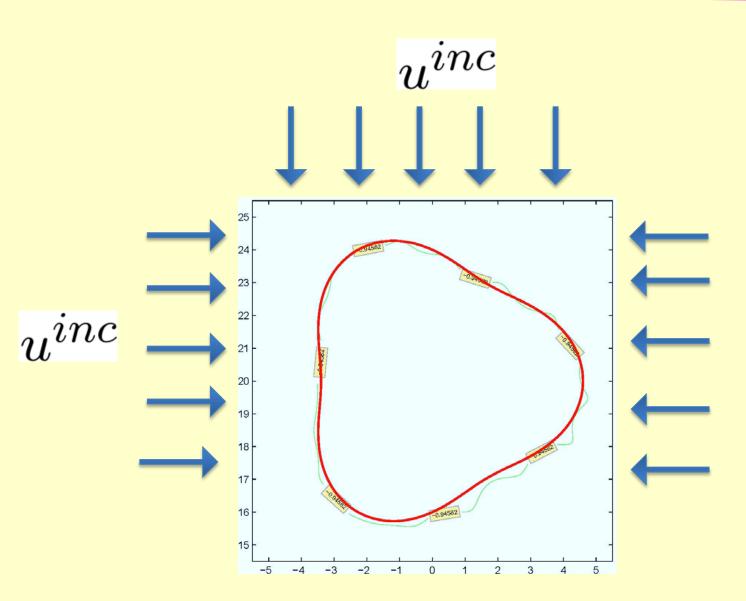
(I) Cut-off Values & Noise



6 incidents & 30 receivers

inaccurate cut-off values

(II) Large Data for LSMs



And LSMs

derived only for wave-type inverse problems

Find methods for more realistic cases

- Apply even with data from a single incident field or a single set of Cauchy data
- Insensitive to data noise
- Involve no solutions of ill-posed & well-posed linear or nonlinear systems
- Apply to general inverse problems

Clearly, hard to have efficient methods for all these

DSMs for General Inverse Problems

Inverse acoustic medium scattering, Ito-Jin-Zou 12; Inverse EM medium scattering, Ito-Jin-Zou 13;

- Non-wave type IPs:
 - Electric impedance tomography, Chow-Ito-Zou 14;
 - Diffusive optical tomography, Chow-Ito-Liu-Zou 14;
 - Moving objects, Chow-Ito-Zou 16;
 - Several other important applications, Chow-Han-Zou 20

General Framework of DSM (Chow-Ito-Zou 2019)

Define a Sobolev dual product on Γ with index γ :

 $\langle \chi, \phi \rangle_{\gamma, \Gamma} \ \forall \, \chi \in Y \,, \phi \in Z$

Select probing & testing funcs $\{\eta_x\}$, $\{\mu_x\}$ based on PDEs

(1) nearly orthogonal wrt $\langle \cdot, \cdot \rangle_{\gamma}$, i.e., $\forall x \in \Omega, y \in D$, kernel $K(x, y) = rac{\langle \eta_x, \mu_y \rangle_{\gamma}}{|\eta_x|_Y}$ like a Gaussian

(2) family of testing funcs is fundamental over testing points:

$$u - u_0 \approx \sum_k a_k \mu_{x_k}$$
 on Γ

General Index functions for DSMs

We define the index function

$$I(x) := \frac{\langle \eta_x, u - u_0 \rangle_{\gamma, \Gamma}}{|\eta_x|_Y} \quad \forall x \in \Omega$$

Then the index provides a probability :

$$I(x) \approx \sum_{k} a_{k} \frac{\langle \eta_{x}, \mu_{x_{k}} \rangle_{\gamma,\Gamma}}{|\eta_{x}|_{Y}}$$

DSM for Acoustic Media (Ito-Jin-Zou 2011)

Acoustic wave, TM or TE mode :

$$\Delta u + k^2 n^2(x)u = 0$$

Fundamental solution G: $\Delta G + k^2 G = \delta(x - y)$

By Lippmann-Schwinger representation:

$$u^{s}(x) = \int_{\widetilde{\Omega}} G(x, y) I(y) dy \approx \sum w_{j} G(x, y_{j})$$

From the above:

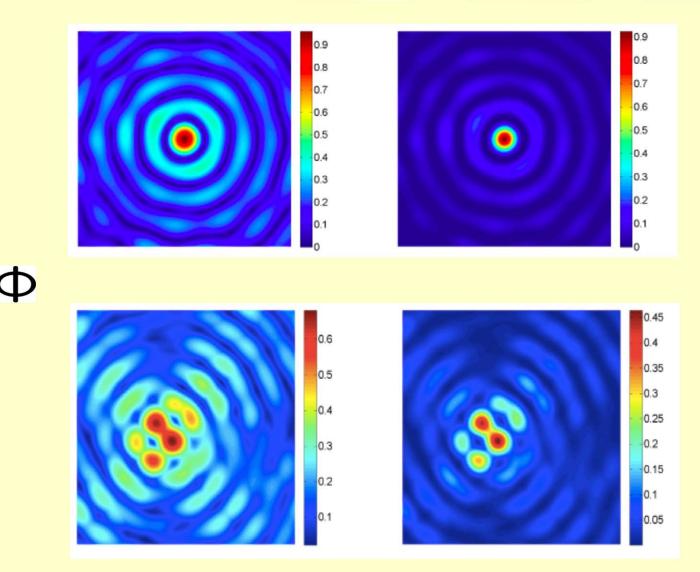
$$\int_{\Gamma} u^{s}(x) \,\overline{G}(x, x_{p}) \, ds \approx k^{-1} \sum w_{j} \operatorname{Im}(G(y_{j}, x_{p}))$$

Direct Sampling Algorithm (Ito-Jin-Zou 2011)

Index func for probability of sampling point:

$$\Phi(x_p) = \frac{|\langle u^s, G(\cdot, x_p) \rangle_{\Gamma}|}{\|u^s\| \|G(\cdot, x_p)\|}$$

Numerical Examples I



Two incidents: 20% noise

DSM for Inverse EM Media Scattering (Ito-Jin-Zou 2013)

Time harmonic EM system :

 $i\omega\epsilon E + \nabla \times H = 0$ in \mathbb{R}^d $-i\omega\mu H + \nabla \times E = 0$ in \mathbb{R}^d

Fundamental solution G: $(-\Delta - k^2)G(x, y) = \delta(x - y)$

Maxwell fundamental soln:

$$\Phi(x,y) = k^2 G(x,y) I + D^2 G(x,y)$$

Direct Sampling Algorithm (Ito-Jin-Zou 2013)

Nearly orthogonality:

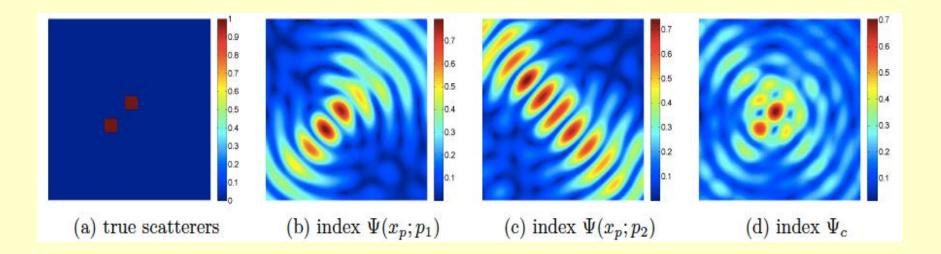
 $\int_{\Gamma} (\Phi(x, x_p) p, \overline{\Phi}(x, x_q) q) ds \approx k^{-1}(p, \Im(\Phi(x_p, x_q)) q) \quad \forall p \in \mathbb{C}^d, q \in \mathbb{R}^d$ By Lippmann-Schwinger representation: $E^s(x) = \int_{\Omega} \Phi(x, y) J(y) dy \approx \sum_j \Phi(x, y_j) J(y_j) |\tau_j|,$ $\langle E^s, \Phi(\cdot, x_p) q \rangle_{L^2(\Gamma)} \approx k^{-1} \sum_j |\tau_j| (J(y_j), \Im(\Phi(x_p, y_j)) q)$

Index func for probability of sampling point:

$$\Psi(x_p;q) = \frac{|\langle E^s, \Phi(\cdot, x_p)q\rangle_{\Gamma}|}{\|E^s\|_{\Gamma}\|\Phi(\cdot, x_p)q\|_{\Gamma}}$$

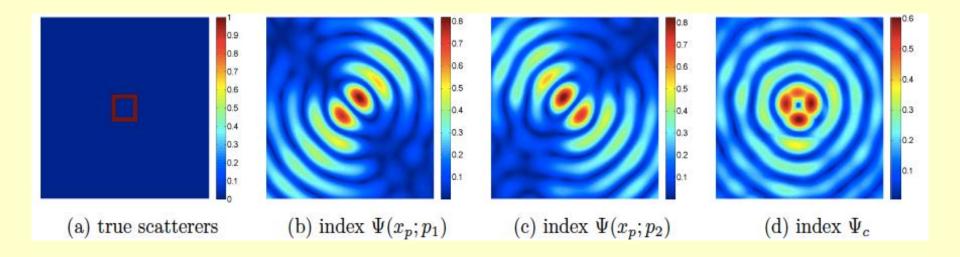
polarization q: basically quite arbitrary; incident polarization works well

Numerical Examples I

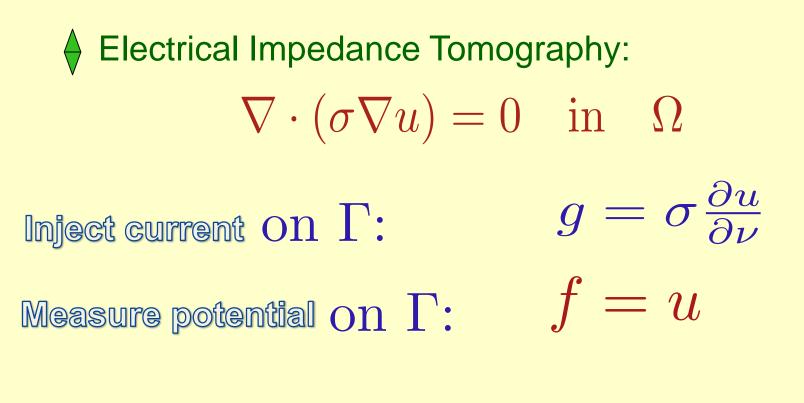


Two incidents, same polarizations p & q: 20% noise

Numerical Examples II



Two incidents, same polarizations p & q: 20% noise



EIT: given (f, g), recover electrical conductivity $\sigma(x)$

Choice of Probing & Testing Spaces/Funcs

Define on the measurement surface Γ :

 $\langle \chi, \phi \rangle_{\gamma, \Gamma} := \langle (-\Delta_{\Gamma})^{\gamma} \chi, \phi \rangle \quad \forall \, \chi \in H^{2\gamma}(\Gamma) \,, \phi \in L^{2}(\Gamma)$

Select probing & testing funcs $\{\eta_x\}$, $\{\mu_y\}$ s.t.

(1) Nearly orthogonal wrt $\langle\,\cdot\,,\,\cdot\,
angle_\gamma$, i.e., $orall\,x\in\Omega,\,y\in D$,

$$K(x,y)=rac{\langle\eta_x,\mu_y
angle_{\gamma,\Gamma}}{|\eta_x|_Y}$$
 like a Gaussian

(2) The testing family is fundamental:

$$u - u_0 \approx \sum_k a_k \mu_{y_k}$$
 on Γ

Choice of Probing Functions

Define $-\Delta w_{x,d} = -d \cdot \nabla \delta_x$ in Ω ; $\frac{\partial w_{x,d}}{\partial u} = 0$ on $\partial \Omega$ Dipole potential : $D_{x,d}(\xi) := c_n \frac{(x-\xi) \cdot d}{|x-\xi|^n}, \quad \xi \in \mathbb{R}^n$ Set $\varphi_{x,d} = D_{x,d} - w_{x,d}$: $-\Delta \varphi_{x,d} = 0$ in Ω ; $\frac{\partial \varphi_{x,d}}{\partial u} = \frac{\partial D_{x,d}}{\partial u}$ on $\partial \Omega$ Probing functions as dir. derivative of Green funcs :

 $\eta_{x,d}(\xi) := w_{x,d}(\xi) = -d \cdot \nabla G_x(\xi) \quad \forall \xi \in \Gamma$

Probing functions for special geometries

For 3D spheric measurement surface :

$$\eta_{x,d}(\xi) = \frac{d \cdot \xi - \frac{(x-\xi) \cdot d}{|x-\xi|}}{\sqrt{4\pi}(|x-\xi| - x \cdot \xi + 1)}$$

For 2D circular measurement curve : $\eta_{x,d}(\xi) = \frac{1}{\pi} \frac{(\xi - x) \cdot d}{|x - \xi|^2}$

Verification of Fundamental Properties

For p.w. constant inclusions $\Omega_1, \, \Omega_2, \, \cdots, \, \Omega_k$:

$$(u - u_0)(\xi) = -\sum_i \int_{\partial\Omega_i} [\eta] \frac{\partial G_{\xi}}{\partial\nu} ds \approx \sum_k a_k \eta_{x_k, d_k}(\xi)$$

so testing funcs take the same as probing, with $d_k =
u(x_k)$

Similarly for p.w. smooth inclusions

For circular measurement curve :

$$\langle \eta_{x,d_x}, \mu_{y,d_y} \rangle_{\gamma,\mathbb{S}^1} = 2 \operatorname{Re}\left(\frac{e^{i(\theta_{d_x} - \theta_{d_y} - \theta_x + \theta_y)}}{r_x r_y} G^{2\gamma}(r_x r_y e^{i(\theta_x - \theta_y)})\right)$$

with a complex polynomial

$$G^{\beta}(z) := \left(z\frac{\partial}{\partial z}\right)^{\beta} \left(\frac{1}{1-z}\right) = \sum_{m=0}^{\infty} m^{\beta} z^{m}$$

so when $y \approx x$ and $d_y \approx d_x$, like a Gaussian

Similarly for spherical measurement surface, but much more technical

Index Function

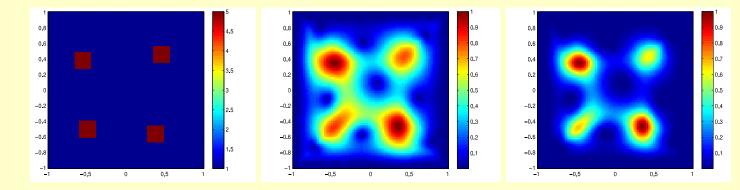
Index function for EIT :

$$K(x,y) = \frac{\langle \eta_x, G_y \rangle_{\gamma}}{|\eta_x|_Y} = \frac{\langle (-\Delta_{\Gamma})^{\gamma} \chi, \phi \rangle}{|\eta_x|_Y}$$

With the Sobolev index

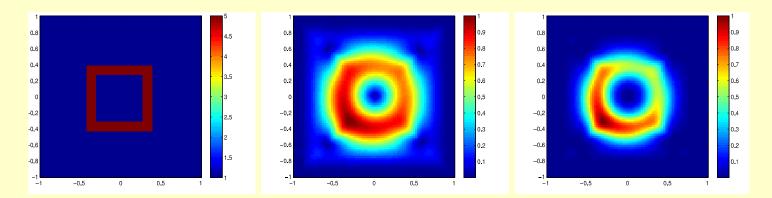
$$\gamma = 2$$

Four separated square objects



5% noise

Thin square ring object:



Diffusive optical tomography in absorption medium Ω with absorption coeff μ & photon density u:

$$-\Delta u + \mu u = 0 \quad \text{in } \Omega$$

Inject current on Γ : $g = \frac{\partial u}{\partial \nu}$

Measure density on Γ : f = u

DOT: given (f, g), recover the absorption coeff μ

Define on the measurement surface Γ : $\langle \chi, \phi \rangle_{\gamma,\Gamma} := \langle (-\Delta_{\Gamma})^{\gamma} \chi, \phi \rangle \quad \forall \, \chi \in H^{2\gamma}(\Gamma) \,, \phi \in L^2(\Gamma)$ Select a set of probing & testing funce $\{\eta_x\}$ & $\{\mu_x\}$: (1) nearly orthogonal wrt $\langle \, \cdot \, , \, \cdot \, \rangle_{\gamma}$, i.e., $\ \forall \, x \in \Omega, \, y \in D$, $K(x,y)=rac{\langle\eta_x,\mu_y
angle_{\gamma,\Gamma}}{|\eta_x|_{Y}}$ like a Gaussian

(2) family probing funcs is fundamental:

$$(u-u_0)(\xi) \approx \sum_k a_k \mu_{y_k}(\xi) \quad \forall \xi \in \Gamma$$

Green function : $-\Delta G_x + \mu_0 G_x = \delta_x$ in Ω ; $\frac{\partial G_x}{\partial \nu} = 0$ on $\partial \Omega$ Scattered potential $u - u_0$ on Γ : $(u - u_0)(\xi) = \int_D G_y(\xi)(\mu_0 - \mu(y))u(y) \, dy \quad \forall \xi \in \Gamma$ Fundamental representation : $(u-u_0)(\xi) \approx \sum_k a_k G_{y_k}(\xi) \quad \forall \xi \in \Gamma$ Green functions: good candidates for testing funcs

Choice of Probing Functions

Green function : $-\Delta w_x + \mu_0 w_x = \delta_x$ in Ω ; $w_x = 0$ on Γ ; $\frac{\partial w_x}{\partial \nu} = 0$ on $\partial \Omega \setminus \Gamma$ Fundamental solution in the whole space Φ_r igstarrow Define ψ_x : $-\Delta \psi_x + \mu_0 \psi_x = 0$ in Ω ; $\psi_x = \Phi_x$ on Γ ; $\frac{\partial \psi_x}{\partial \nu} = \frac{\partial \Phi_x}{\partial \nu}$ on $\partial \Omega \setminus \Gamma$ Probing functions, $w_x = \Phi_x - \psi_x$: $\eta_x(\xi) := \frac{\partial w_x}{\partial u}(\xi) \quad \forall \xi \in \Gamma$

Probing functions for special geometries

For 2D circular measurement curve :

$$\eta_x(y) = \frac{1 - |x|^2}{2\pi |x - y|^2} \quad \forall y \in \mathbb{S}^1$$

• Orthogonality or Gaussian like behaviour :

$$K(x,z) = \frac{\langle \eta_x, G_z \rangle_1}{|\eta_x|_1^{\frac{1}{2}} |\eta_x|_0^{\frac{3}{4}}} = C(x) \left\{ \frac{r_z r_x \cos(\theta_x - \theta_z)(1 + r_z^2 r_x^2) - 2r_z^2 r_x^2}{(1 - 2r_z r_x \cos(\theta_x - \theta_z) + r_z^2 r_x^2)^2} \right\}$$

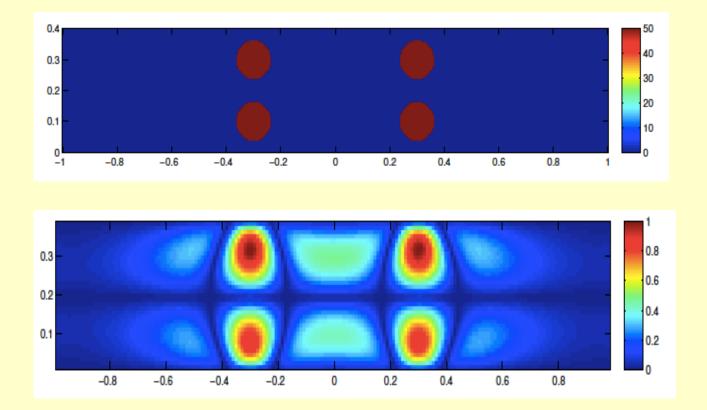
Recall the kernel functions for DOT:

$$K(x,y) = \frac{\langle \eta_x, G_y \rangle_{\gamma}}{|\eta_x|_Y} = \frac{\langle (-\Delta_{\Gamma})^{\gamma} \chi, \phi \rangle}{|\eta_x|_Y}$$

with the Sobolev index

$$\gamma = 1$$

Example I (5% noise)



Severely ill-posed, 4 inclusions close to each other & to the boundary, but reconstructions quite satisfactory: 5% noise, only one Cauchy data, data far away from inclusions

General Principle of time-dependent DSM

- **Define a Sobolev dual product on** $\Gamma \times (\tau_0, T)$: $\langle \chi, \phi \rangle_{\gamma, \Gamma \times (\tau_0, T)} \quad \forall \, \chi \in Y \,, \phi \in Z$
- Select probing & testing funcs $\{\eta_{x,t}\}$, $\{\mu_{y,s}\}$ based on PDEs
- (1) nearly orthogonal wrt $\langle \cdot, \cdot \rangle_{\gamma}$, i.e., $\forall y \in D, s \in (\tau_0, T)$,

kernel
func:
$$K(x,t;y,s) = \frac{\langle \eta_{x,t}, \mu_{y,s} \rangle_{\gamma,\Gamma \times (\tau_0,T)}}{|\eta_{x,t}|_Y}$$
 Gaussian

(2) testing funcs are fundamental over set of testing points:

$$u - u_0 \approx \sum_{k,j} a_{k,j} \mu_{y_k,s_j}$$
 on $\Gamma \times (\tau_0, T)$

General Index functions for DSMs

We define the index function

$$I(x,t) := \frac{\langle \eta_{x,t}, u - u_0 \rangle_{\gamma, \Gamma \times (\tau_0, T)}}{|\eta_{x,t}|_Y} \quad \forall x \in \Omega, t \in (0,T)$$

Then the index provides a probability :

$$I(x,t) \approx \sum_{k} a_{k,j} \frac{\langle \eta_{x,t}, \mu_{y_k,s_j} \rangle_{\gamma,\Gamma \times (\tau_0,T)}}{|\eta_{x,t}|_Y}$$

Heat conduction/moving DOT:

$$\frac{\partial u}{\partial t} = a\Delta u - q(x,t)u$$

Measure heat intensity on Γ : \mathcal{U} corresponding to one single \mathcal{U}_0

Inverse Problem: given u, recover q(x,t)

Testing Functions

 $\forall u_0$: heat intensity with background potential q_0 $\frac{\partial(u-u_0)}{\partial t} - a\Delta(u-u_0) = -q_0(u-u_0) - (q-q_0)u$ we have $(u - u_0)(x, t) = -\int_0^T \int_{D(t)} \Phi(x - y, t - s) c(y, s) dy ds$ $\Phi(x,t) = \frac{1}{4\pi at} \exp\left(-\frac{|x|^2}{4at}\right)$ with fundamental solution Therefore $(u-u_0)(x,t) \approx \sum_{k,j} c_{kj} \Phi(x-y_k,t-s_j) \quad \forall (x,t) \in \Gamma \times (0,T)$ **Probing functions :** $\eta_{x,t} := \Phi_{x,t}(y,s) \equiv \Phi(x-y,t-s) \,\chi_+(t-s-\delta)$

Define on the measurement surface :

$$\langle \chi, \phi \rangle_{\alpha, \Gamma \times (0, t)} := \langle \Delta_x^{\alpha} \chi, \phi \rangle \quad \forall \, \chi \in H^{2\alpha}(\Gamma) \,, \phi \in L^2(\Gamma)$$

DSM index functions :

not surface Laplacian this time

$$I_0^{\alpha}(x,t) = \frac{\langle \eta_{x,t}, u - u_0 \rangle_{\alpha,\Gamma \times (0,t)}}{|w_{x,t}^{\alpha}|_Y}$$

Normalization :

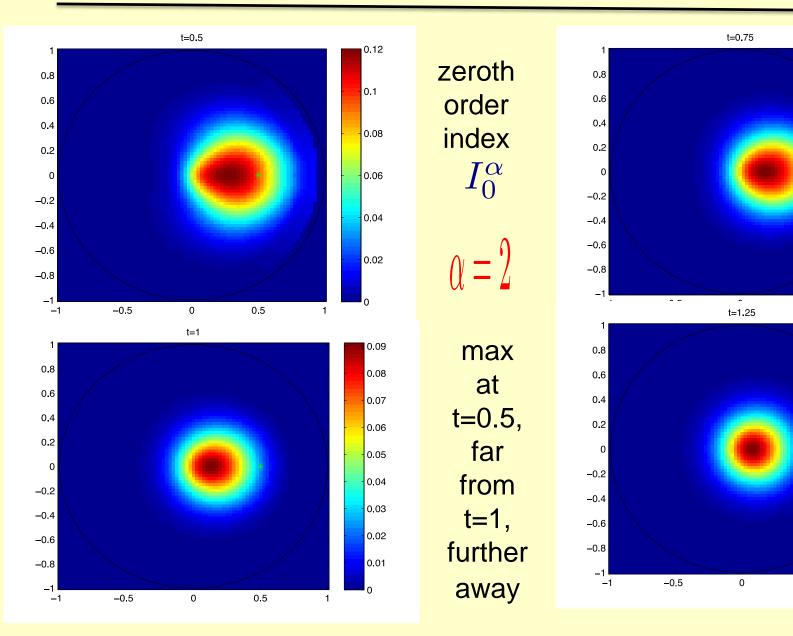
$$\hat{I}_{0}^{\alpha}(x,t) = \frac{|I_{0}^{\alpha}(x,t)|}{\max|I_{0}^{\alpha}(x,t)|}$$

DSM index functions : real time reconstruction

$$I_0^{\alpha}(x,t) = \frac{\langle \eta_{x,t}, u - u_0 \rangle_{\alpha,\Gamma \times (0,t)}}{|w_{x,t}^{\alpha}|_Y}$$

no any data after time t needed

Behavior of index for point source $q = \delta_{(0.5,0)}(x)\delta_1(t)$



) C

1

0.5

0.11

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.05

0.04

0.03

0.02

0.01

n

Temporal derivatives of zeroth order index I_0^{lpha}

From the behaviour of I_0^{α} , we see big drop in spatial maximum with time as time goes on from t=1, so a rate of change of I_0^{α} may capture the inclusion more effectively:

$$I^{\alpha}_{\gamma} = \frac{\partial^{\gamma}}{\partial t^{\gamma}} I^{\alpha}_{0}$$

Behavior of index for point source $q = \delta_{(0.5,0)}(x)\delta_1(t)$

1 st

order

index

 I_1^{α}

 $\alpha = 2$

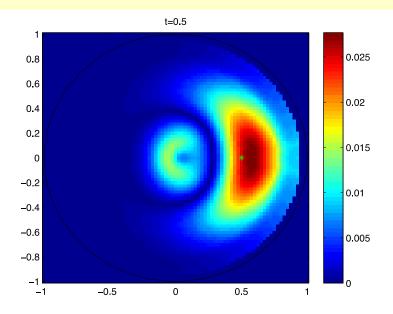
max

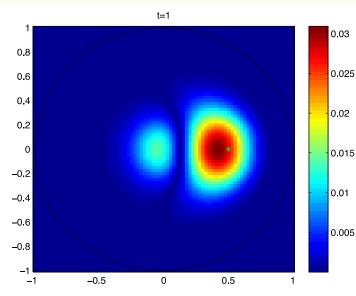
well

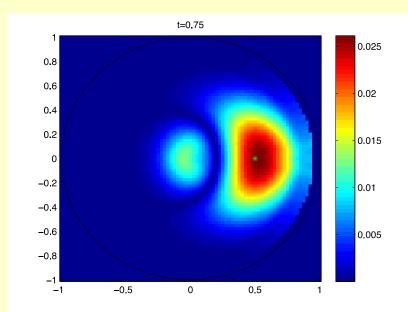
reached

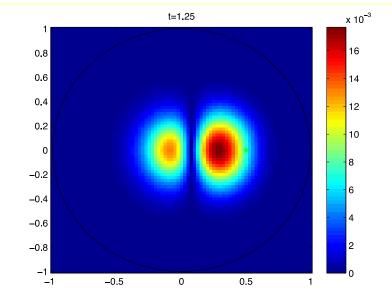
at

t=1

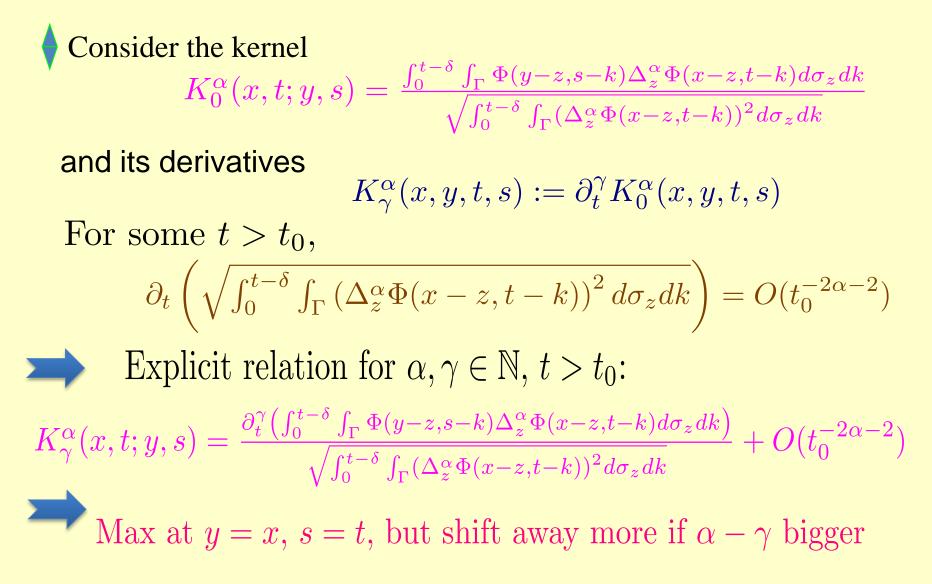






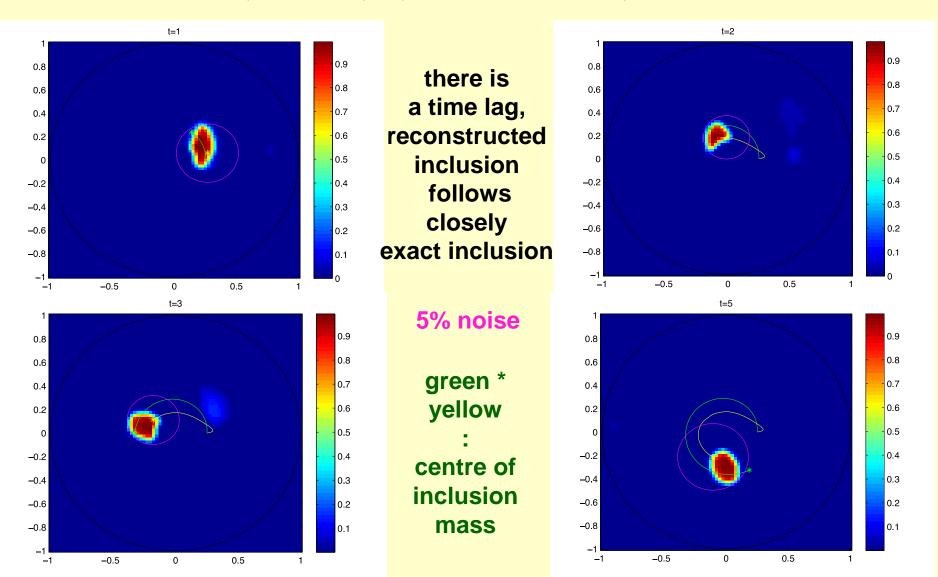


Verification of Index Function



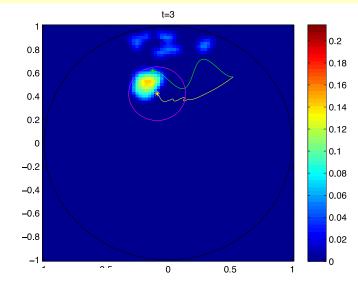
Numerical Experiments I

 $\Gamma(t) = \left(\frac{t}{8T} + 0.25\right) \left(\cos\left(\frac{t\pi}{3}\right), \sin\left(\frac{t\pi}{3}\right)\right), \quad t \in (0,5)$

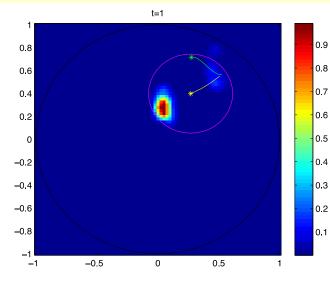


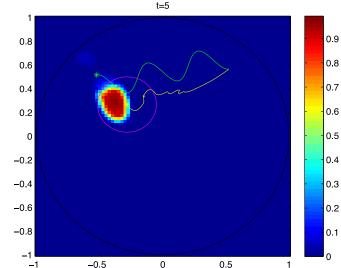
Numerical Experiments II

 $\Gamma(t) = \left(-\frac{t}{5} + \frac{1}{2} + \frac{1}{40}\cos(t\pi), -\frac{t}{20} + \frac{2}{3} - \frac{1}{0}\cos(t\pi)\right), \quad t \in (0,5)$



once it succeeds to approach exact inclusion for t>2, it starts to follow exact path



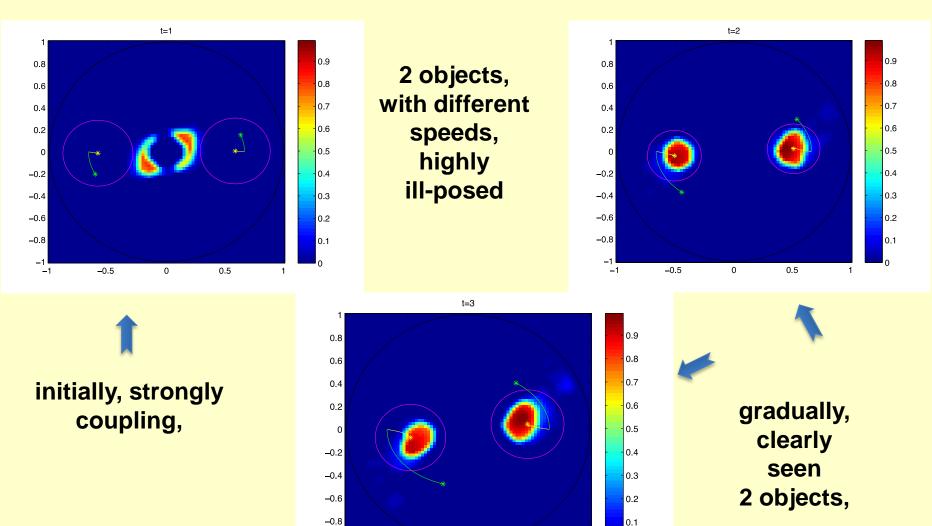


recovered trajectory can even follow very fine turnings as exact one from t >4 onwards

Initially, for t<2, the reconstructed inclusion tries to find the exact inclusion

Numerical Experiments III

 $\Gamma_1(t) = \left(\frac{2}{3}\cos\left(\frac{t\pi}{10}\right), \frac{1}{2}\sin\left(\frac{t\pi}{10}\right)\right), \quad \Gamma_2(t) = \left(-\frac{2}{3}\cos\left(\frac{2t\pi}{15}\right), -\frac{1}{2}\sin\left(\frac{2t\pi}{15}\right)\right)$



0

0.5

1

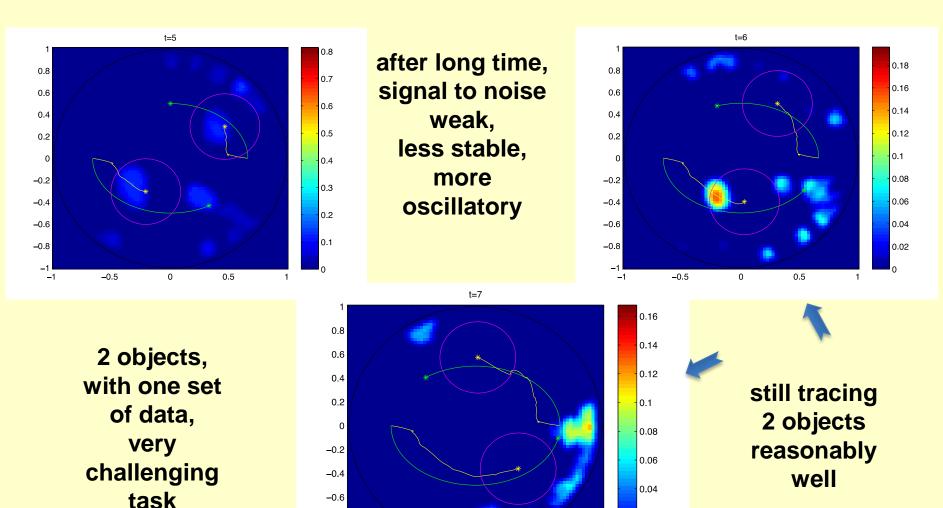
-1

-1

-0.5

Numerical Experiments III

 $\Gamma_1(t) = \left(\frac{2}{3}\cos\left(\frac{t\pi}{10}\right), \ \frac{1}{2}\sin\left(\frac{t\pi}{10}\right)\right), \quad \Gamma_2(t) = \left(-\frac{2}{3}\cos\left(\frac{2t\pi}{15}\right), \ -\frac{1}{2}\sin\left(\frac{2t\pi}{15}\right)\right)$



0

0.5

-0.8

-1

-1

-0.5

0.02

0

1

64

An Optimal Control framework

Forward equation: $L_a(u) = 0, \quad Bu = f$ **Background equation:** $L_{a_0}(u_0) = 0$, $Bu_0 = f$ Parameter-to-solution: $L_{a_0}(u - u_0) = -(L_a - L_{a_0})(u) := J(q - q_0)$ $u - u_0 = G |J(q - q_0)|$

An Optimal Control Framework

Parameter-to-solution: $u - u_0 = G |J(q - q_0)|$ $E: u - u_0 \rightarrow (u - u_0)|_{\Gamma}$ Index function : $I = (\Phi \circ W_{X,\gamma}(\eta) \circ E \circ G) \left[J(q - q_0) \right]$ Hope I provides an estimate of support of $J(c-c_0)$ $\Phi \circ W_{X,\gamma}(\eta) \circ E \circ G \approx id : X \to X^*$ $\min \|\Phi \circ W_{X,\gamma}(\eta) \circ E \circ G - id\|_{X \to X^*}^2$ $\Phi.\gamma$

Index Function for DSM

Recall the kernel function :

$$K(x,y) = \frac{\langle \eta_x, G_y \rangle_{\gamma}}{|\eta_x|_Y} = \frac{\langle (-\Delta_{\Gamma})^{\gamma} \chi, \phi \rangle}{|\eta_x|_Y}$$

Sobolev index : Wave-type: $\gamma=0$ EIT: $\gamma=2$ DOT: $\gamma=1$

Features of DSMs

- Computationally very cheap, completely parallel
- Stability: straightforward
- Works for a single measurement data
- Robust against noise in data, due to orthogonality:
 - high frequency components in data orthogonal to fundamental solutions on measurement surface

Other related sampling methods

R Potthast 2010, inverse obstacle scattering

ZM Chen et al. (since 2013): reverse time migration, inverse obstacle acoustic & EM scattering

HAmmari, et al.

WK Park, et al.

HY Liu, XD Liu, JZ Li, YK Guo,

....

Mostly for inverse wave scattering

THANK YOU!